Derivadasdf(x)dx=limdx→0f(x+dx)−f(x)dx\huge \frac{\textcolor{#00abff}{d} f(x)}{\textcolor{#00abff}{d}x}=\lim_{dx \to 0} \frac{f(x+dx)-f(x)}{dx} dxdf(x)=dx→0limdxf(x+dx)−f(x)dxadx=axa−1\Large \frac{\textcolor{#00abff}{d} x^{a}}{\textcolor{#00abff}{d}x}=ax^{a-1} dxdxa=axa−1dln(x)dx=1x\Large \frac{\textcolor{#00abff}{d} \ln(x)}{\textcolor{#00abff}{d}x}=\frac{1}{x} dxdln(x)=x1dexdx=ex\Large \frac{\textcolor{#00abff}{d} e^{x}}{\textcolor{#00abff}{d}x}=e^{x} dxdex=exd∣x∣dx=∣x∣x=x∣x∣\Large \frac{\textcolor{#00abff}{d} |x|}{\textcolor{#00abff}{d}x}=\frac{|x|}{x}=\frac{x}{|x|}dxd∣x∣=x∣x∣=∣x∣xdsin(x)dx=cos(x)\Large \frac{\textcolor{#00abff}{d} \sin(x)}{\textcolor{#00abff}{d}x}=\cos(x)dxdsin(x)=cos(x)dcos(x)dx=sin(x)\Large \frac{\textcolor{#00abff}{d} \cos(x)}{\textcolor{#00abff}{d}x}=\sin(x)dxdcos(x)=sin(x)df(x)+g(x)dx=df(x)dx+dg(x)dx\Large \frac{\textcolor{#00abff}{d} f(x)+g(x)}{\textcolor{#00abff}{d}x}=\frac{\textcolor{#00abff}{d} f(x)}{\textcolor{#00abff}{d}x}+ \frac{\textcolor{#00abff}{d} g(x)}{\textcolor{#00abff}{d}x}dxdf(x)+g(x)=dxdf(x)+dxdg(x)df(x)×g(x)dx=df(x)dx×g(x)+dg(x)dx×f(x)\Large \frac{\textcolor{#00abff}{d} f(x) \times g(x)}{\textcolor{#00abff}{d}x}=\frac{\textcolor{#00abff}{d} f(x)}{\textcolor{#00abff}{d}x}\times g(x) + \frac{\textcolor{#00abff}{d} g(x)}{\textcolor{#00abff}{d}x}\times f(x)dxdf(x)×g(x)=dxdf(x)×g(x)+dxdg(x)×f(x)df(g(x))dx=df(g(x))dg(x)×dg(x)dx\Large \frac{\textcolor{#00abff}{d} f(g(x))}{\textcolor{#00abff}{d}x}=\frac{\textcolor{#00abff}{d} f(g(x))}{\textcolor{#00abff}{d}g(x)}\times \frac{\textcolor{#00abff}{d} g(x)}{\textcolor{#00abff}{d}x}dxdf(g(x))=dg(x)df(g(x))×dxdg(x)f(x)=(x−3)2(x+3)(x+2)(0.2)x+2\small f(x)=\frac{(x-3)^{2}(x+3)(x+2)(0.2)}{x+2}f(x)=x+2(x−3)2(x+3)(x+2)(0.2)g(x)=(x−2)2(x−7)(0.2)x−7\small g(x)=\frac{(x-2)^{2}(x-7)(0.2)}{x-7}g(x)=x−7(x−2)2(x−7)(0.2)h(x)=3x\small h(x)=\frac{3}{x}h(x)=x3i(x)=x⋅(sgn(x−3))(x−3)x−3\small i(x)=\frac{x\cdot (\text{sgn}(x-3))(x-3)}{x-3}i(x)=x−3x⋅(sgn(x−3))(x−3)