leeern by Yuri

Notas de YuriRod


Página tipo blog en el que voy a publicar mis notas de aprendizaje, en especial de temas como matemáticas, física y quizá algo de programación

Redes neuronales
Redes neuronales
Redes neuronales
Redes neuronales

Derivadas

df(x)dx=limdx0f(x+dx)f(x)dx\huge \frac{\textcolor{#00abff}{d} f(x)}{\textcolor{#00abff}{d}x}=\lim_{dx \to 0} \frac{f(x+dx)-f(x)}{dx}
dxadx=axa1\Large \frac{\textcolor{#00abff}{d} x^{a}}{\textcolor{#00abff}{d}x}=ax^{a-1} dln(x)dx=1x\Large \frac{\textcolor{#00abff}{d} \ln(x)}{\textcolor{#00abff}{d}x}=\frac{1}{x} dexdx=ex\Large \frac{\textcolor{#00abff}{d} e^{x}}{\textcolor{#00abff}{d}x}=e^{x} dxdx=xx=xx\Large \frac{\textcolor{#00abff}{d} |x|}{\textcolor{#00abff}{d}x}=\frac{|x|}{x}=\frac{x}{|x|}dsin(x)dx=cos(x)\Large \frac{\textcolor{#00abff}{d} \sin(x)}{\textcolor{#00abff}{d}x}=\cos(x)dcos(x)dx=sin(x)\Large \frac{\textcolor{#00abff}{d} \cos(x)}{\textcolor{#00abff}{d}x}=\sin(x)df(x)+g(x)dx=df(x)dx+dg(x)dx\Large \frac{\textcolor{#00abff}{d} f(x)+g(x)}{\textcolor{#00abff}{d}x}=\frac{\textcolor{#00abff}{d} f(x)}{\textcolor{#00abff}{d}x}+ \frac{\textcolor{#00abff}{d} g(x)}{\textcolor{#00abff}{d}x}df(x)×g(x)dx=df(x)dx×g(x)+dg(x)dx×f(x)\Large \frac{\textcolor{#00abff}{d} f(x) \times g(x)}{\textcolor{#00abff}{d}x}=\frac{\textcolor{#00abff}{d} f(x)}{\textcolor{#00abff}{d}x}\times g(x) + \frac{\textcolor{#00abff}{d} g(x)}{\textcolor{#00abff}{d}x}\times f(x)df(g(x))dx=df(g(x))dg(x)×dg(x)dx\Large \frac{\textcolor{#00abff}{d} f(g(x))}{\textcolor{#00abff}{d}x}=\frac{\textcolor{#00abff}{d} f(g(x))}{\textcolor{#00abff}{d}g(x)}\times \frac{\textcolor{#00abff}{d} g(x)}{\textcolor{#00abff}{d}x}