leeern by Yuri

Notas de YuriRod


Página tipo blog en el que voy a publicar mis notas de aprendizaje, en especial de temas como matemáticas, física y quizá algo de programación

Redes neuronales
Redes neuronales
Redes neuronales
Redes neuronales

Transformada y series de Fourier

Serie de Fourier de f(x)\Large f(x)

Toda funcion periódica puede ser expresada como serie de Fourier

f(x)=n=0(Ancos(2nπxT)+Bnsin(2nπxT))\Large f(x)=\sum_{n=0}^{\infty } \left( A_n \cos( \frac{2n\pi x}{T} )+B_n\sin( \frac{2n\pi x}{T}) \right)

Simil con el vector

Base ortonormal canónica
{en}n=1\Large \{e_n\}^\infty_{n=1}
Base ortonormal Serie de Fourier
{cos(nx),sin(nx)}n=1\Large \{\cos(nx), \sin(nx) \}^\infty_{n=1}
Vector genérico en dicha base de ejemplo:
v=n=1vnen\overrightarrow{v} = \sum_{n=1}^{\infty} \textcolor{#3DBBE9}{v_n} \textcolor{#ffb764}{\overrightarrow{e_n}}
f(x)=n=0(Ancos(nx)+Bnsin(nx))f(x) = \sum_{n=0}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( n x )} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(nx)} \right)
Hallar cierto coeficiente:
vem=n=1vnenem\overrightarrow{v} \cdot \overrightarrow{e_{\textcolor{#FF6040}m}} = \sum_{n=1}^{\infty} \textcolor{#3DBBE9}{v_n} \textcolor{#ffb764}{\overrightarrow{e_n}} \cdot \overrightarrow{e_{\textcolor{#FF6040}m}}
enem=δnm\overrightarrow{e_n} \cdot \overrightarrow{e_m} = \delta_{nm}
vem=n=1vnδnm\overrightarrow{v} \cdot \overrightarrow{e_{\textcolor{#FF6040}m}} = \sum_{n=1}^{\infty} \textcolor{#3DBBE9}{v_n} \delta_{\textcolor{#ffb764}n\textcolor{#FF6040}m} vem=vm\overrightarrow{v} \cdot \overrightarrow{e_{\textcolor{#FF6040}m}} = \textcolor{#FF6040}{v_m}
f(x)cos(mx)=n=1(Anc(nx)+Bns(nx))cos(mx)f(x) \cdot \cos(\textcolor{#FF6040}mx) = \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{c( n x ) } + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{s(nx)} \right)\cdot \cos(\textcolor{#FF6040}mx)
cos(nx)cos(mx)=πδnm\cos(nx) \cdot \cos(mx) = \pi \delta_{nm}cos(nx)sin(mx)=0\cos(nx) \cdot \sin(mx) = 0sin(nx)sin(mx)=πδnm\sin(nx) \cdot \sin(mx) = \pi \delta_{nm}
f(x)cos(mx)=n=1(Anπδnm+Bn0)f(x) \cdot \cos(\textcolor{#FF6040}mx) = \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \pi \delta_{\textcolor{#ffb764}n\textcolor{#FF6040}m} + \textcolor{#3DBBE9}{B_n}0 \right)f(x)cos(mx)=n=1Anπδnmf(x) \cdot \cos(\textcolor{#FF6040}mx) = \sum_{n=1}^{\infty } \textcolor{#3DBBE9}{A_n}\pi \delta_{\textcolor{#ffb764}n\textcolor{#FF6040}m} f(x)cos(mx)=Amπf(x) \cdot \cos(\textcolor{#FF6040}mx) = \textcolor{#FF6040}{A_m} \pi

De forma general para hallar los coeficientes de Fourier
f(x)=n=0(Ancos(nx)+Bnsin(nx))f(x) = \sum_{n=0}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( n x )} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(nx)} \right)T=2πω  , x(0,T)T=\frac{2\pi}{\omega} \ \ , \ x \in (0,T)f(x)=A0cos(2(0)πxT)+B0sin(2(0)πxT)+n=1(Ancos(2nπxT)+Bnsin(2nπxT))\small f(x) = A_0 \cos(\frac{2 (0)\pi x}{T}) + B_0\sin(\frac{2 (0)\pi x}{T})+ \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( \frac{2n \pi x}{T})} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(\frac{2n \pi x}{T})} \right)f(x)=A0(1)+B0(0)+n=1(Ancos(2nπxT)+Bnsin(2nπxT))\small f(x) = A_0 (1) + B_0(0)+ \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( \frac{2n \pi x}{T})} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(\frac{2n \pi x}{T})} \right)f(x)=A0+n=1(Ancos(2nπxT)+Bnsin(2nπxT))\large f(x) = A_0 + \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( \frac{2n \pi x}{T})} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(\frac{2n \pi x}{T})} \right)
Hallando AnA_n
f(x)cos(2mπxT)=A0cos(2mπxT)1+n=1(Anδnm+Bn0)f(x) \cdot \cos(\frac{2m \pi x}{T}) = A_0 \cos(\frac{2m \pi x}{T}) \cdot 1 + \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \delta_{nm} + \textcolor{#3DBBE9}{B_n} 0 \right)f(x)cos(2mπxT)=Amf(x) \cdot \cos(\frac{2m \pi x}{T}) = A_m
2T0Tcos(2nπxT)f(x)dx=An\frac{2}{T} \int^{T}_0 \cos(\frac{2n \pi x}{T}) f(x) dx= A_n

Hallando BnB_n
f(x)sin(2mπxT)=A0sin(2mπxT)1+n=1(An0+BnT2δnm)f(x) \cdot \sin(\frac{2m \pi x}{T}) = A_0 \sin(\frac{2m \pi x}{T}) \cdot 1 + \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} 0 + \textcolor{#3DBBE9}{B_n} \frac{T}{2} \delta_{nm} \right)f(x)sin(2mπxT)=BmT2f(x) \cdot \sin(\frac{2m \pi x}{T}) = B_m \frac{T}{2}0Tsin(2mπxT)f(x)dx=BmT2 \int^{T}_0 \sin(\frac{2m \pi x}{T}) f(x) dx= B_m \frac{T}{2}
2T0Tsin(2nπxT)f(x)dx=Bn\frac{2}{T} \int^{T}_0 \sin(\frac{2n \pi x}{T}) f(x) dx= B_n

Hallando A0A_0
f(x)1=A01+n=1(An0+Bn0)f(x) \cdot 1 = A_0 \cdot 1 + \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} 0 + \textcolor{#3DBBE9}{B_n} 0 \right)f(x)1=A011f(x) \cdot 1 = A_0 1 \cdot 10T1f(x)dx=A00T1dx=A0(T0)dx=AT \int^{T}_0 1 f(x) dx= A_0 \int^{T}_0 1 dx = A_0 (T-0) dx = A T
1T0T1f(x)dx=A0\frac{1}{T} \int^{T}_0 1 f(x) dx= A_0